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Abstract. Kormylo and Mendel proposed a maximum-likelihood deconvolution (MLD) algorithm for estimating a desired 
sparse spike sequence p.(k), modelled as a Bernoulli-Gaussian (B-G) signal, which was distorted by a linear time-invariant 
system v(k). Then Chi, Mendel and Hampson proposed another MLD algorithm which is a computationally fast MLD 
algorithm and has been successfully used to process real seismic data. In this paper, we propose an adaptive MLD algorithm, 
which allows v(k) to be a slowly time-varying linear system, for estimating the B-G signal ~(k) from noisy data. Like the 
previous MLD algorithms, the proposed adaptive MLD algorithm can also recover the phase of v(k) when v(k) is 
time-invariant. Some simulation results are provided to support the proposed algorithm. 

Zasammenfassung. Kormylo und Mendel haben einen Maximum-Likelihood Entfaltungs-(MLD)-Algorithmus fiir die Sch/it- 
zung einer gewiinschten, sp~irlichen impulsfolge /~(k) vorgeschlagen, die als ein Bernoulli-Gau8 (B-G) Signal modelliert 
wird, das durch ein lineares, zeitinvarientes System v(k) verzerrt wird. Danach haben Chi, Mendel und Hampson einen 
anderen MLD-Algorithmus vorgeschlagen, der ein rechentechnisch schneller MLD-AIgorithmus ist und beim Verarbeiten 
echter seismischer Daten erfolgreich eingesetzt wurde. In diesem Beitrag schlagen wir einen adaptiven MLD-Algorithmus 
vor, der es erlaubt, dab v(k) ein langsam zeitvariantes lineares System ist, und das B-G-Signal aus verrauschten Daten 
schatzt. Genau wie die vorhergehenden MLD-Algorithmen kann der vorgeschlagene adaptive MLD-AIgorithmus auch die 
Phase yon v(k) gewinnen, wenn v(k) zeitinvariant ist. Einige Simulationsergebnisse werden vorgestellt, die den vorge- 
schlagenen Algorithmus unterstiJtzen. 

R6sum6. Kormylo et Mendel ont propos6 un algorithme de d6convolution par maximum de vraisemblance (MLD) pour 
l'estimation d'une s~quence ~(k) d'impulsions clairsem~e, mod61is~e par un signal Bernoulli-gaussien (B-G) qui a ~t~ 
d6form6 par un syst~me lin6aire v(k) invariant dans le temps. Puis Chi, Mendel et Hampson ont propos6 un autre algorithme 
MLD qui est rapide au niveau du calcul et a 6t6 utilis6 avec succ~s pour traiter des donn6es sismiques r6elles. Dans cet 
article, nous proposons un algorithme MLD adaptatif, ce qui permet ~ v(k) d'etre un syst~me lin6aire variant lentement 
dans le temps, pour l'estimation du signal B-G p.(k) /t partir de donn6es bruit6es. De m~me que les algorithmes MLD 
pr6c6dents, l'algorithme MLD adaptatif propos6 peut 6galement recouvrer la phase de v(k) quand v(k) est invariant dans 
le temps. Nous pr6sentons quelques r6sultats de simulation pour montrer l'int6r& de l'algorithme propos6. 

Keywords. Maximum-likelihood deconvolution, block component method, nonminimum-phase linear systems, time-varying 
linear systems. 

1. Introduction 

Estimating a desired signal Ix(k) from a given 
set of noisy data z(k)  based on the convolutional 
model 

z(k)  = y (k )  + n(k)  = ix(k) * v(k) + n(k)  
o o  

= ~ v ( i ) i x ( k - i ) + n ( k )  (1) 
i = 0  

is a deconvolution problem, where y(k)  is the 
noise-free measurement, n(k)  is measurement 
noise and v(k)  is the impulse response of a linear 
time-invariant signal distorting system which cor- 
responds to such as the source wavelet in seismic 
deconvolution [3, 8, 11, 17, 18, 21, 23] and the 
channel impulse response in channel equalization 
[4, 20] (in communications). Conventionally, 
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/z(k), except for a scale factor, is estimated using 
a prediction error filter [21, 23] which assumes that 
/z(k) is a white noise and v(k) is minimum-phase. 

Regarding the model of the signal distorting 
system v (k), two other equivalent forms of  (1) are 
frequently used. The first one is a transfer function 
model. V(z),  the z-transform of  v(k),  is modelled 

as an n-th order autoregressive moving average 
(ARMA) filter as follows: 

B(z)  
V(z) - (2) 

A(z ) '  

where 

A(z)  = 1 + a , z - '  +" • "+ a ,z -"  (3) 

and 

B ( z ) =  fll q_~2 z 1 + . . . f f .  flnZ-n+l. (4 )  

The other one is a state-variable model. The con- 
volutional model (1) can be represented in an n-th 
order state-variable form as 

x(k)  = Crpx(k - l) + T/x (k), (5) 

z(k)  = hTx(k) + n(k),  (6) 

where x(k) ,  2/ and h are n × 1 vectors, and • is 
an n x n matrix. Note that v(k) = hTt]bk'y and that 

given V(z) there exist many (~,  % h)'s [12, 25]. 
These three models provide the designer of  decon- 

volution algorithms with a flexibility of taking the 
most appropriate one at each specific signal pro- 
cessing stage during the algorithm design. Thus, 
the obtained deconvolution algorithm will be more 
efficient and applicable from practical viewpoints 
such as computational load and complexity of the 
obtained algorithm. 

Kormylo and Mendel [9] and Kormylo [8] pro- 
posed a Bernoulli-Gaussian (B-G) model, which 
has been used in seismic deconvolution and bio- 
medical ultrasonic imaging, for a sparse spike 
sequence as 

# ( k )  -- r ( k ) .  q(k), (7) 

where r(k) is a white Gaussian random sequence 
with variance cr 2 and q(k) is a Bernoulli sequence 

for which 

{ ; ~ ,  q ( k ) =  1, 
er[q(k)]= 1 - &  q ( k ) = 0 .  (8) 

The B-G model for a sparse spike sequence has 
led to many high-resolution deconvolution 
algorithms reported in the past decade such as 
[3 ,5 ,7 ,9 -11 ,  13, 14, 17, 18]. On the other hand, 

n(k) is assumed to be zero-mean white Gaussian 
in almost all deconvolution problems. 

The estimation of /z(k) when source wavelet 
v(k) and statistical parameters A, o-2 and noise 

variance trz, are unknown is surely much more 
difficult than that when everything (i.e. v(k),  A, o'Zr 
and ~rZn) is known a priori. Among the existing 
deconvolution algorithms based on the B-G 
model, the ones which assume that everything is 
known form a major category and the ones which 
assume that everything is unknown form the other 
major category. The material reported in this paper 

belongs to the latter category and is more or less 
limited to the readers with background of  decon- 
volution of B-G signals. In order to broaden the 
scope of the paper to more readers, let us briefly 
present the evolution of  deconvolution of B-G 
signals associated with the former and then that 
associated with the latter in the following. Kwaker- 
naak [13] reported a maximum-likelihood decon- 
volution (MLD) algorithm based on the Poisson- 

Gaussian model for i t (k)  which was shown [8, 17] 
to be the same as the B-G model for A << 1. His 
algorithm uses the convolutional model (1) in the 
whole signal processing procedure and is an 
adaptation of  the familiar matched filtering tech- 
nique. However, its performance is vulnerable to 
the overlapping of r ( r i ) v ( k - r i )  in z(k) where ri 
is associated with q(~-i) = 1 that happens when the 
source wavelet is long and A is not small. Based 
on the B-G model for ~(k) ,  Kormylo and Mendel 
[9] and Kormylo [8] proposed a recursive fixed-lag 
MLD algorithm. Mahalanabis et al. [14] reported 
a recursive maximum a posteriori (MAP) 
algorithm whose performance is similar to that of 
Mendel and Kormylo's recursive algorithm with 
less computations. Kormylo and Mendel [ 10] pro- 
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posed a computationally efficient iterative MLD 
algorithm, called the single-most-likely-replace- 
ment (SMLR) algorithm, which is basically imple- 
mented by a Kalman filter type fixed-interval 
optimal smoother and outperforms the previous 
two recursive algorithms. The state-variable model 
for v(k) is used in these algorithms. Goussard and 
Demoment [5] provided a recursive fixed-lag MAP 
algorithm and a recursive fixed-lag MLD 

algorithm, and both of them are based on a moving 
average (MA) degenerate state-variable rep- 
resentation for the source wavelet. They also indi- 
cated that the recursive fixed-lag MLD algorithm 
not only performs better than the recursive fixed- 
lag MAP algorithm but also shows better robust- 
ness. For computational feasibility, all the previous 
algorithms are suboptimal in nature and their per- 

formance was intuitively thought to depend on the 
length of source wavelet, since longer source wave- 

let leads to severer overlapping of r(w~)v(k - w~) in 
z (k), until Chi [ 1, 2] reported that the performance 
of the SMLR algorithm depends on the mainiobe 
width of the autocorrelation function of source 
wavelet rather than on the length of source wavelet. 

On the other hand, estimation of ~ (k )  when 
everything is unknown is so-called blind deconvoi- 
ution. Based on the state-variable model (5) and 
(6), Kormylo and Mendel [11] proposed a high- 
resolution maximum-likelihood deconvolution 
(MLD) algorithm [ 11, 17, 18], which includes esti- 
mation of v(k), detection of q(k), estimation of  
r(k) and estimation of statistical parameters A, o~ 
and 2 o-°, for estimating /x (k)=  r(k). q(k) using 
measurements z(1), z ( 2 ) , . . . ,  z(N). Under the 
same assumptions about /~(k) ,  n(k) and v(k), Chi 
et al. [3] proposed a computationally fast MLD 
algorithm, which has been successfully used to 
process real seismic data [3, 18]. These algorithms 
are also Kalman filter based nonlinear signal pro- 
cessing algorithms and can, in particular, recover 
the phase of  v(k). Thus, they outperform the con- 
ventional predictive deconvolution filter partly 
because a more accurate model fo r /x (k )  is used 
and partly because v(k) might not be minimum- 
phase in practice. Kollias and Halkias [7] com- 
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bined the recursive instrumental variables (RIV) 
methods for the estimation of  ARMA parameters 
associated with v(k) with the fixed-lag minimum- 
variance deconvolution (MVD) algorithm [ 17, 18] 
for the estimation of p.(k). Their RIV-MVD 
algorithm, which is also an adaptive algorithm, 
seems to be promising. However, to the authors' 
knowledge, it is never reported that the RIV-MVD 
algorithm has been successfully used to process 

real seismic data. Various other deconvolution 
algorithms based on the B-G model for ~ (k) which 

are not mentioned here are still a lot and most of 
them are listed in the bibliography on deconvolu- 
tion of [18]. 

However, in practice, v(k) is time-varying due 
to frequency absorption incurred during the wave- 
let propagation from source to sensor. Many adap- 
tive deconvolution algorithms for processing non- 

stationary seismic data were also reported in the 
open literature [6, 7, 15, 16, 19, 24, 26]. Prediction 
error based adaptive deconvolution algorithms 
such as [6, 15, 19,26] and Kalman filters based 
adaptive deconvolution algorithms such as [16, 24] 
are the two major categories of existing adaptive 
deconvolution algorithms, whereas they are based 
on the conventional white noise model instead of 
a B-G model fo r /x (k )  and either a time-varying 
v(k), or a time-varying ARMA model or a time- 
varying state-variable model for the source wave- 
let. In this paper, we propose an adaptive MLD 
algorithm, which allows v(k) to be a slowly time- 

varying linear system, with the same assumptions 
abou t / z (k )  and n(k) made by Kormylo, Mendel 
and Chi. 

In Section 2, we present the proposed adaptive 
MLD algorithm. We then show some simulation 
results to support this algorithm in Section 3. 
Finally, we provide a discussion and some con- 
clusions. 

2. An adaptive MLD algorithm 

The proposed MLD algorithm is basically a 
noncausal block signal processing algorithm. A 
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block of  z(i), i =  k, k + l , . . . ,  k + 2 L - 1 ,  where L 
is a positive integer, is processed to yield/~(i)  for 
i =  k, k +  1 , . . . ,  k + L - 1 .  Then the next block of 
z(i), i=  k + L ,  k + L +  1 , . . ,  k + 3 L -  1 is processed 
to yield/~(i) for i = k +  L, k +  L +  1 , . . . ,  k + 2 L -  1. 
In other words, the size of signal processing block 
is 2L and the contiguous blocks have a 50% over- 
lap. /2(i)  for i ~  k + 2 L  are obtained so on and so 
forth. 

Assume that v(k) is time-invariant (equivalently 
ai and fl~ are constant) within any signal processing 
block. Let O = ( a l ,  a 2 , . . . ,  a, ,  /31, /32 , . . . ,  ft,)v, 
Zk=(Z(1), Z(2) , . . . ,  z ( k ) , . . . ,  z ( k + Z L - 1 ) )  T, 
rk=(r(1),  r ( 2 ) , . . . ,  r ( k ) , . . . ,  r ( k + 2 L - 1 ) )  v and 
qk=(q(1) ,  q ( 2 ) , . . . ,  q ( k ) , . . . ,  q ( k + 2 L - 1 ) )  v. 
The likelihood function to be maximized is defined 
to be 

= p(Zk, rk, qk l 0, A, o'2) 

= p(Zk Irk, qk, O, or2.) • p(rk)" P~(qk l A) 

k+2L- I  k+2L-1 

= [I p(e(i)[O,o'2.) I] p(r(i)) 
i=1 i=l 

k+2L--I 
x [I Pr(q(i) JA) 

i l 

k+2L--I 1 ~" e(i)21 

= ~=,II (2rrCr2n)l/2 e x p ( -  2cr2, J 

k+2L-I  
1 e x p ~ - ~  

(2~r0~2) '/2 ( 2err J 

h q(i)(1 - h)l-q(i), (9) 

x [I 
i=l  

k+2L--I 

× 11 

where 

e ( i ) = z ( i ) - y ( i ) = z ( i ) - # ( i ) * v ( i ) .  (10) 

The parameter cry, which is not identifiable 
because o f y ( k )  = (six(k)) * (v (k ) / s )  for any s ~ 0, 
is, therefore, assumed to be known a priori. The 
proposed adaptive algorithm tries to search for ~k, 
#k ,  6k+L- - I ,  A(k+ L -  1) and t~2,(k + L -  1) such that 
S k is maximum when r k = rk ,  qk-----qk,  0 = 6k+ L 1, 

h = ) ' t ( k + L -  1) and tr2.= ~ 2 . ( k + L - 1 ) ,  under the 
'adaptiveness constraint': 
Signal Processing 

(C1) ~(i), ~(i) (equivalently /2(i)) and fi(i) 
(equivalently ~(i)) for i ~  < k - 1  be fixed. 

Our approach for finding a local maximum Pf  Sk 
is a block component method (BCM) [3, 11, 17, 18] 
given as follows: 
(sl) I ter= 0 
(s2) Iter = Iter+ 1 
(s3) Update qk; update A ( k + L - 1 ) ;  update rk; 

update Ok+L-l; update ~en(k+ L -  1) 
(s4) If Iter < M go to (s2), 
where M is the allowed maximum number of 
iterations and is set ahead of time. Whenever a 
block of  parameters in (s3) is updated, Sk is 
guaranteed to increase with the other parameters 
fixed. The desired estimates of fi(i) = ~(i)~(i), k <~ 
i ~< k + L -  1, can be obtained from the first L ele- 
ments of ~k and qk. We, next, present how to update 
~k, qk, Ok+L 1, A ( k + L - 1 )  and ~ 2 . ( k + L - 1 ) ,  
respectively, by processing the measurement block 
of  z(k),  z ( k +  1 ) , . . . ,  z ( k + 2 L -  1). 

2.1. Estimation of  A and o'2 

Setting the partial derivatives of Sk with respect 
to A and 0-2, equal to zero yields 

and 

A ( k + L - 1 )  

1 {k-1 k+2L-I  } 
Y~ 4(0+ ~ q(i) (11) 

k + 2 L - 1  .i=1 i~k 

~ 2 ( k + L -  1) 

- k + 2 - L - l ( i ~ l e ( i ) 2 +  ,~k e(i)2 ' 

(12) 

respectively, where we have used q(i )= ~(i) and 
e(i) = ~(i) for i~< k -  1. 

We basically follow the same procedure for 
amplitude estimation, detection of q(i) and estima- 
tion of 0 as reported in [3, 11, 17, 18] with some 
necessary modifications in view of the constraint 
(C1). 
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2.2. Detection of  q(i) 

The well-known SMLR algorithm [3,10,11, 
17, 18] is an efficient algorithm for the detection 
of q(i) for k < ~ i ~ k + L - 1 .  Let A(j )  denote the 
following likelihood ratio: 

Sk{~, qj, 0, A, (r~l Zk} (13) 
A( j )  =Sk{P~, q~, O, A, cr21Zk}" 

where q~ = (q,(1) = ~(1), q,(2) = ~(2) . . . . .  
q~(k -1 )=  4 ( k - 1 ) ,  q~(k) . . . .  , q~(k + 2 L - 1 ) )  T, in 

which we have used q~(i)=~(i) for i<~k-1 ,  is a 
reference sequence, qt = ( q r ( 1 ) , . . . ,  q , ( j - 1 ) ,  
1 - q , ( j ) ,  q ~ ( j + l ) , . . . ,  q~ (k+2L-1 ) )  T is a test 
sequence which differs from q, only at a single 
time location j, and ~ as well as P~ (see (17) below) 
are the corresponding optimum amplitude esti- 
mates associated with qt and q~, respectively. The 
iterative SMLR detection procedure is summarized 
as follows: 
(a) Compute l nA( j )  for j = k ,  k + l , . . . ,  

k + 2 L - 1 .  
(b) Assume that In A(j ') = max{In A ( j ) l k  <-j <<. 

k + 2 L - 1 } ;  if l n A ( j ' ) > 0 ,  update q~(j') by 
1 -  q~(j') and go to (a). 

When lnA(j)<~0 for all k ~ j < ~ k + 2 L - 1 ,  the 
detection of q(i) is finished and ~( i )=  q~(i) for 
k<~ i<~ k+ L - 1 .  The by-product q~(i) for k+ L ~  
i < ~ k + 2 L - 1  together with q ( i ) = 0  for k+2L<~ 
i<~ k + 3 L -  1 can be used as the initial conditions 
for the next signal processing block associated with 

Sk+L. 
In A(j)  fo r j  = k, k + l , . . . ,  k + 2 L - 1  have been 

shown to be [3, I0] 

1 tr2~f2pt A 
In A(J) - 2 1+ tr~ajpj2 ~-Pt I n - 1  - A' (14) 

where 

fj = V/12~lzk, (15) 

a t = v~g2~lVi, (16) 

pt = 1-2qr ( j ) ,  v t = ( 0 , 0 , . . .  , v(0), v ( 1 ) , . . . ,  v ( k -  
j))v and $'-2~-----E[Zk zTlqr], fj and a t for k<~i<~ 
k + 2 L - 1  can also be obtained by processing the 
signal block of z(k),  z ( k + l ) , . . . , z ( k + 2 L - 1 )  

using a Kalman filter type optimal smoother 
associated with (5) and (6), which is summarized 
in Appendix A, with the initial conditions £ ( k -  
l l k -  1) and P ( k - l l k - 1 ) w h e r e . ~ ( k - 1 1 k - I ) i s  
the filtered estimate of x(k  - 1), P ( k -  l [k  - 1) is 
the error covariance matrix of £ ( k -  I l k -  1) and 
both of them are available prior to time point k. 

2.3. Amplitude estimation 

It is well-known that the ML estimate ~(i) 
[3, 11, 17, 18] is given by 

~( i) = tr2rq( i)f~. (17) 

Therefore, obtaining :(i) using (17) with q( i )=  
~(i) and f /g iven  by (15) is trivial. 

2.4. Estimation of wavelet parameters 

Maximizing Sk (see (9)) with respect to O under 
the constraint (C I) is equivalent to minimizing the 
following nonlinear objective function: 

k + 2 L - I  

J (O)=  E ½e(i) 2. (18) 
i = k  

We use a Newton-Raphson type algorithm to 
search for a local optimal 0. With the initial 
Ok+L_l~O -~- Ok-I  , OJk+L-I at the j-th iteration is 
updated by 

,,. ^. H_ 1 ~k.L ,=  f f# /L - , -P  t-,gJ ,, (19) 

where 0 < p <~ 1 is a constant, gt- 1 and Hj_ ~ denote 
the gradient and the approximate Hessian matrix 
for 8 = 0{~-k-1, respectively, as follows: 

gt-I = 3~10~jk~+lL_l 

~ + ~ - '  ) ~ 
= 2 e(i , (20) 

i = k 0 = O{+lL_,  

O2J 

k+2L-l(Oe(i))(Se(i)~T I ~-- ~ 

(21) 
Vol. 24, No. 2, Augus t  1991 
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where the term including the second derivative of 
e(i) with respect to 0 in (21) is neglected. In order 
to compute &_l and ~ l, we need e(i), 3e(i)/Oa,, 
and ~e(i)/O[3m for m = 1, 2 , . . . ,  n, and how to com- 
pute them is described in the following. 

From (1), (2) and (10), we have that 

A(q)[z(i)-  e(i)]  = A(q)y(i) = B(q)lz(i), (22) 

In which we have used q ~ to denote a unit delay 
operator. Notice that {y(i) = 33(i) I k - n <~ i ~< k - 1} 

(due to (C1)) and {/z(i) l k -  n +  1 <~ i~< k + 2 L -  1}, 
where / z ( i ) = f i ( i )  for i<~k-1 (due to (C1)), are 
needed for computing y(i) (or e(i)= z(i)-y(i)) ,  
for k<~ i < - k + 2 L - 1  with (22). Taking the partial 
derivative of  (22) with respect to am and/3, , ,  for 
m = 1 , 2 , . . . ,  n, we find 

3e(i) 
A(q) = z ( i - m ) - e ( i - m ) = y ( i - r n )  

OOtm 

(23) 

and 

Oe(i) 
A(q) - - -  tz( i -  m + 1). (24) 

0/3m 

Remark that {y ( i ) [k -m<~i<~k+2L- l -m} ,  
where y(i)= 39(i) for i<~ k -  1, is needed for com- 
puting Oe(i)/Oam with (23) and that {/x(i) I k -  m + 

1 <~ i<~ k + 2 L -  m}, where/x(i)  = fi.(i) for i<~ k - 1, 
is needed for computing Oe(i)/OCim with (24). On 

the other hand, the initial conditions for computing 

Oe(i)/Oa,, and Or(i)/O~Sm are zero. At each iter- 
ation, updating 0 using (19) with p = 1 normally 
leads to a decrease of J along with a stable recur- 
sive filter 1/.4(z) which is needed for computing 
e(i), the gradient and the approximate Hessian 
matrix; otherwise, a smaller p must be considered. 

Two remarks are worth to be mentioned here. 
The first one is that when 2L = N (total number 
of  data), the previous adaptive MLD algorithm 
with k =  1 when M is large is the same as the 
algorithm of  Chi et al. [3] which also maximizes 
S1 using the previous BCM until convergence. 
Secondly, to initialize the proposed adaptive MLD 
algorithm, the initial conditions for 
(q3(0), ~(0),/~(0)), ~ ( 0 )  as well as Jr(0), must be 
Signal Processing 

given in advance. Of course, the closer the initial 
conditions to the optimal solutions, the faster the 
time-varying v(k) will be tracked by the previous 

adaptive MLD algorithm. It is, therefore, appropri- 
ate that one obtains the optimum solutions associ- 
ated with $1 using the algorithm of Chi et al. until 

S~ converges and then switches the mode to the 
previous adaptive MLD algorithm for Si, i~>2. 
Next, we present some computer simulations to 
support the proposed adaptive MLD algorithm. 

3. Simulation examples 

Two simulation examples are to be presented. 
The first one is associated with a second order 
nonminimum-phase time-invariant v(k) for which 

qbl, hi, ~1 for the 'controllable canonical form' are 

• ,=E o '3=E o :] 
--0~ 2 --Or I - - 0 . 5  ' 

[ f l 2 ] = [ l i 3  ] and T , = [ ~ ] .  
h i=  B~ 

Note that the zero of V(z) located at z = - flz/fll = 
-1.3 is outside the unit circle. For the second 
example, the true time-varying q~(k), "r(k) and 
h(k) of the state-variable model (5) and (6) are 
given as follows: 

(/)(k) = 

h(k) = { 

r ( k )  = ~,, 

where 

[ 0 
qO2 = -0 .4  

q~l, k ~< 120, 

~,  + [ ( ~ 2 -  ~ , )  

x ( k -  120)/12801, 120 < k < 1400, 

(~2 ,  k/> 1400, 

hi, k <~ 120, 

h ~+[ (h 2 -h l )  

x ( k -  120)/1280], 120< k < 1400, 

h2, k 1> 1400, 

112] h2=[1;'] • 
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Not ice  tha t  the  source  wave le t  for  120 < k < 1400 

is s lowly  chang ing  f rom the  one  (sol id  l ine in Fig. 

l ( a ) )  a s soc ia t ed  with (q~l, 1/1, hi) for  k<~ 120 to 

the one (so l id  l ine in Fig.  7(a))  a s soc ia t ed  with 

(t~2, Y2-- "Y1, h2) for  k ~  1400 f rom which  high 

f requency  a t t enua t ion  in this  pure ly  art i f icial  

source  wavele t  can  be observed .  Fo r  each example ,  

we gene ra t ed  the  noise- f ree  da ta  y (k )  by convolv-  

ing the se lec ted  wavele t  v(k)  with a B - G  signal  

with pa r a me te r s  A = 0.1 and  cr 2̀ = 1. We then  a d d e d  

a p s e u d o - G a u s s i a n  r a n d o m  noise  sequence  to y ( k )  

to form the synthe t ic  da t a  z (k )  with s igna l - to -noise  
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Fig. 1. Simulation results associated with Example 1. (a) True time-invariant wavelet (solid line) and estimated wavelet (dashed 
line) associated with Sl; (b) true /x(k) (circles) and estimated ~(k) (bars) for 1 <~ k ~ 300. 
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ratio (SNR) equal to 10. We then processed z(k) 
using the proposed adaptive MLD algorithm with 
L = 3 0 a n d  M--1 .  

For the first example, the initial conditions for 
(~(0) ,  ~(0),/z(0)) used were 

] ] ,  / ; (O)=[o .Ol]  &(O) = [-O0.O1 0.1 

C.-Y. Chi, W.-T. Chen /  Maximum-likelihood deconvolution 

and ~(0)--'y, .  Note that q~(0), /z(0) are very 
different from ~] and h,, respectively, d~(0) as 
well as h(0) were equal to the true values of tr~ 
and A, respectively. The simulation results are 
shown in Figs. 1 through 3. In Figs. l(a), 2(a) and 
3(a), solid lines indicate true v(k) and dashed lines 
depict estimated v(k)'s associated with S1, $90, 
and S,5o~, respectively. The estimated /z(k)'s for 

2.5 

2 

1.5 

1 

0.5 

0 

-0.5 

-10 

/ 

1'0 

(a) 

1'5 2.0 2'5 3'0 3'5 40 

SAMPLES 

-1 

-2 

% 

II 

11° 

950 1000 

+t 

(b) 

1050 1100 1150 1200 

SAMPLES 

Fig. 2. Simulation results associated with Example 1. (a) True time-invariant wavelet (solid line) and estimated wavelet (dashed 
line) associated with S9o[; (b) true # ( k )  (circles) and estimated p,(k) (bars) for 901 <~ k<~ 1200. 
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Fig. 3. Simulation results associated with Example 1. (a) True time-invariant wavelet (solid line) and estimated wavelet (dashed 
line) associated with $15ot; (b) true p,(k) (circles) and estimated/z(k) (bars) for 1501 ~ k ~< 1800. 

1 ~< k <~ 300, 901 <~ k <~ 1200 and 1501 <~ k ~< 1800 are 

shown in Figs. l (b) ,  2(b) and 3(b), respectively, 

where circles denote  true spikes and bars denote  

estimates. F rom Fig. 1, one can see that ~3(k) is 

not  close to v(k )  at all due to bad  initial condi t ions  

used for ( ~ ( 0 ) ,  ~(0),  h(0)),  and  thus the est imated 

ix(k) is terribly away f rom the true ix(k). From 
Fig. 2(a), one can see that  t3(k) tracks v(k )  well 

except for a scale factor  ~ ( k ) / v ( k )  ~ 0.65. This fact 

is consistent with Fig. 2(b) which shows t ha t / 2 (k )  

overshoots  Ix(k) by about  35%. Figure 3(b) shows 
tha t /2(k)  overshoots  ix(k) by about  15% for 1500<~ 

k ~< 1590, which is also consistent with the scale 

factor  ~ ( k ) / v ( k ) = 0 . 8 5  (see Fig. 3(a)), and the 
amount  o f  overshoot  is smaller for  k/> 1591 which 

implies that  the scale factor  ~ ( k ) / v ( k )  associated 
Vol. 24, No. 2, Augus t  1991 
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with Si for i ~  > 1591 is greater than 0.85. Again, 
we draw, from Fig. 3, the same conclusion 
that t3(k) tracks v(k) well except for a scale 
factor. 

For the second example, we assume that the 
proposed adaptive MLD algorithm had processed 
all z(k) for -oo  < k < 0 corresponding to the case 
of Example 1, and all unknown parameters were 
correctly estimated although their estimation 

accuracies depend on SNR. We would like to show 
that the algorithm can then track v(k) and estimate 
/.t ( k )  well from k = 0 on. Therefore, we processed 
z(k) using the proposed adaptive algorithm with 
the initial conditions (~ (0 ) ,  ~(0) , /~(0))  = 
(~1 ,  ~'~, hi), 82,(0) as well as ~.(0) equal to the true 
values of 0-2. and A, respectively. 

The simulation results are shown in Figs. 4 
through 7. In Figs. 4(a), 5(a), 6(a) and 7(a), solid 
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Fig. 4. Simulation results associated with Example 2. (a) True time-varying wavelet (solid line) and estimated wavelet (dashed line) 
associated with $18 G (b) true /.t(k) (circles) and estimated p.(k) (bars) for 1 ~ k ~ 300. 
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lines and dashed lines depict true time-varying 
v(k)'s (associated with the center time point of 
signal processing block) and estimated v(k)'s 
associated with S~ for i = 181,721, 1081 and 1891, 
respectively. In Figs. 4(b), 5(b), 6(b) and 7(b), we 
also show t2(k)'s for 1 ~< k ~< 300, 601 <~ 900, 901 <~ 
1200 and 1801~< 2100, respectively. From Figs. 4 
through 6, one can see that ~3(k)'s (dashed lines) 
track the time-varying v(k) well except for a 

different scale factor, which is also consistent with 
the corresponding amount of undershoot of /~(k)  
with respect to /z(k), to each figure. Figure 7(a), 
where v(k) is actually time-invariant but not 
minimum-phase (with a zero located at z = -1.1), 
shows that 13(k) tracks v(k) well except for a scale 
factor 3(k)/v(k)-~ 1.2 which, again, is consistent 
with the fact (see Fig. 7(b)) that/~(k) undershoots 
/z(k) by about 20%. 
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Fig. 5. Simulation results associated with Example 2. (a) True time-varying wavelet (solid line) and estimated wavelet (dashed line) 
associated with $7el; (b) true /z(k) (circles) and estimated /,t(k) (bars) for 601 ~< k~<900. 
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Fig. 6. Simulation results associated with Example 2. (a) True time-varying wavelet (solid line) and estimated wavelet (dashed line) 
associated with S~08~; (b) true /z(k) (circles) and estimated /~(k) (bars) for 901 <~ k ~< 1200. 

The previous two simulat ion examples  demon-  

strated that  the p roposed  adapt ive  M L D  algori thm 

works well when  v(k) is slowly time-varying. The 

est imated v(k)  tracks v(k) ,  which is not  necessarily 

min imum-phase  when it is t ime-invariant,  well 

except for a scale factor. However ,  the scale factor  

is usually existent in other  deconvolu t ion  
algorithms. For  the case that  v(k)  is t ime-invariant  

S i g n a l  P r o c e s s i n g  

(Example  1 and Example  2 for k~<120 and k ~  > 

1400), if the initial condi t ions  are closer to the 

op t imum solutions, the p roposed  adaptive M L D  

algori thm can track v(k)  well by spending less 

recursions (equivalently less data).  The scale factor  

for this case is also closer to unity when more  data 
are used. As a final remark,  we also per formed 

many  other  simulations with the order  n o f  the 
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Fig. 7. Simulation results associated with Example 2. (a) True time-invariant wavelet (solid line) and estimated wavelet (dashed 
line) associated with $1891; (b) true/.t(k) (circles) and estimated ~(k)  (bars) for 1801 <~ k ~ 2100. 

source wavelet larger than 2 which also led to the 
same conclus ions  obtained from the previous two 
examples.  

4. Discussion and conclusions 

We have presented a noncausal  adaptive MLD 
algorithm for estimating a desired sparse spike 

sequence ~z(k), model led as a B-G signal, which 
was distorted by a slowly time-varying linear sys- 
tem v(k). At each time point k, all the unknown 
quantities are updated based on the l ikel ihood 
function Sk (see (9)) by a BCM under the adaptive- 
ness constraint (C1). Measurements are processed 
block by block with a 50% overlap. Like the MLD 
algorithms reported in [3, 11, 17, 18], our adaptive 
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MLD algorithm can also recover v(k) to a scale 
factor when v(k) is time-invariant but not 
necessarily minimum-phase. The larger 2L (size of 
signal processing block), the better the perform- 
ance of the adaptive MLD algorithm is when v(k) 
is time-invariant. However, when v(k) is slowly 
time-varying, 2L must be chosen for which v(k) 
can be thought of as a time-invariant system within 
each signal processing block. The more overlap in 
contiguous blocks and the larger M (maximum 
iterations of BCM), the better the performance is 
at the expense of more computations. The overlap 
of 50% is a good choice from the viewpoints of 
computational load and performance by our 
experience. 

and compute the covariance, S w ( j l k + 2 L - 1 ) ,  of 
w(j[k  + 2 L - 1 )  by 

S w ( j l k + 2 L - 1 )  

= @p( j )Sw ( j  + 11 k + 2 L  - 1) qgvp(j) 

+ h~7-'(j)h ~, (A.8) 

j = k + 2 L - 1 ,  k + 2 L - 2 , . . . , k ,  where ~pT(j)= 
cP[I -K( j )hV] ,  w ( k + 2 L I k + 2 L - 1 ) = O  (zero 
vector) and S w ( k + 2 L ] k + 2 L - 1 ) = [ O ]  (zero 
matrix). Finally, 

f j  = y r w ( j ] k + 2 L -  l )  (A.9) 

Appendix A. Optimal smoother for computing 
given by (15) and aj given by (16) 

and 

at = yTsw(J I k + 2 L -  1)% (A.10) 

The well-known Kalman filter associated with 
(5) and (6) is used to convert z(j),  j = k ,  k+ 
1 , . . . , k + 2 L - 1 ,  into the innovations process, 
denoted £(J lJ-1) ,  as follows: 

£( j l j  - 1) = ci9£(j- 1 l J -  1), (A.1) 

P ( j ] j -  1) = c I g P ( j -  l [ j -  1 ) ~  T 

+ cr2rqr(j)yy T, (A.2) 
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~(J IJ - 1) = z(j)  - h T~(j IJ -- 1), (A.3) 

(J) = h T p ( j  IJ - 1)h + c~, (A.4) 

K (j) = P( j  [ j -  1)hr/(j) -t, (A.5) 

P ( j l j ) = [ I - K ( j ) h v ] P ( j l j - 1 ) ,  (A.6) 

where I is an n x n identity matrix. We then process 
£(J I J -  1) by the anticausal filter 

w(jl k + 2 L -  l) = C19p(j)w(j + l [ k + 2L - 1) 

+h~l l ( j ) i ( j l j - 1 ) ,  (A.7)  
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